
August, 2005

Visual FoxPro 9/8

Fix Control Names Easily

This tool lets you specify a new name for each control on a form or
class and fixes all code that uses it.

By Tamar E. Granor, technical editor

I'm currently working on an application that was originally written by
someone else. It has several dozen forms and many of the forms have

15, 20, or more controls. The original author renamed the controls

only sporadically, so most of them have names like Text1, Command2
(or even Command22), and so forth.

As I modify and improve these forms, figuring out which control I need
to address is a real problem. I started renaming the controls manually,

but making the corresponding changes to the form's code turned out
to be extremely tedious and somewhat error-prone. (You have to be

sure to rename them in the right order, as a search for Command2
also turns up Command20, Command21, and so forth). After I'd done

just a few of them, it became clear I needed a tool to help.

I asked around, but no one knew of anything that would handle this

task, so I decided to build my own. What I wanted was a tool that
would:

 Audit a form to create a list of controls on the form
 Present me with that list and let me specify a new name for any of

those controls

 Update both the code and the controls themselves to use the new
names

It turned out the first two items on the list were easy, but the third

offered some fairly interesting challenges. The biggest issue was
properly identifying references to the different controls in the code --

that is, reading a line of code that works with a control and knowing
which control on the form is being referenced, so the reference can be

changed. Doing things in the right order turned out to be very
important. In addition, along the way, I found two VFP bugs, one of

which I have yet to work around. I call the resulting tool the Control
Renamer.

In this article, I'll explain how it works and take a look at much of the

code involved. After that, I'll show you how to use the tool.

Although I designed the tool to work with forms, it took only minor

changes to get it to work with container classes as well. As I explain
how it works, I'll generally refer to "the target object," which is the

form or class you want to change. The Control Renamer is included on
this issue's Professional Resource CD.

Structuring the tool

I decided early on to separate the engine for my tool from its user
interface. This makes it possible to use the engine without a user

interface, or to design a different user interface. The part of the tool
that accomplishes the first and third tasks is handled by a subclass of

Custom, while the user interface that lets you specify the new names
is an SCX-based form.

After some consideration, I made the form the control center of this
tool. So the form instantiates the engine class and maintains a

reference to it. To use it, you open the target object in the Form
Designer or Class Designer. Then you run the Control Renamer form

either on its own or through VFP's Builder mechanism. (I show you
later in this article how to hook the Control Renamer into the Builder

system.)

The Control Renamer form

The Control Renamer form (figure 1) is fairly simple. It uses a list box

to show the current names of the controls on the target object, has a
few text boxes and an edit box to tell you more about the target object

and the control currently selected in the list, and includes a button to
start the renaming process. It also lets you decide whether to show

the list of controls in alphabetical order or in container order.
Container order -- the default -- means the controls inside a container

are shown immediately after the container. Within any container
(including the target object), controls are arranged alphabetically.

Figure 1: Control Renamer form–This shows you the controls on the target object
and lets you specify new names. It's the control center for the tool.

The form has four custom properties and two custom methods (table

1). The About method is used only for documentation and isn't
discussed further.

Table 1: Form PEMs–The Control Renamer form uses four custom properties and
two custom methods.

Name Type Purpose

About Method Documentation

cObjectInfo Property Identifying information (such as caption)
for the target object

FocusOnControl Method Moves focus on the target object to the
control currently selected in the list box

oChangeForm Property Object reference to the Form Designer or

Class Designer form for the target object

oChangeObject Property Object reference to the target object

oChangerEngine Property Object reference to the Control Renamer

engine object

oChangeForm and oChangeObject make it possible to talk to the target
object. oChangeObject is a reference to the form or class itself. It

turns out the Class Designer always creates a form, even when the

class you're working with is based on some other base class.
oChangeForm is an object reference to that form; it's used by the

FocusOnControl method.

Managing focus in the target object

As I began to get the Control Renamer form working, I realized the
value of synching the highlight in the target object with the list on the

Control Renamer form. That is, as you move through the list, the

appropriate control is highlighted on the target object. The
FocusOnControl method accomplishes this.

Surprisingly, the SetFocus method works at design time, so
FocusOnControl can call the SetFocus method of a control on the

target object to highlight it in the designer. However, not every control
in VFP has a SetFocus method. For those controls that don't, you have

to use brute force. The code uses the MOUSE command to click on the
appropriate control and, because it's rude for code to leave the mouse

somewhere other than where it found it, MOUSE is used again to
restore the mouse position. The Control Renamer form's AlwaysOnTop

property is normally set to True to ensure the form doesn't fall behind
the target object. However, FocusOnControl needs access to the target

object, so the method toggles the AlwaysOnTop property, turning it off
at the beginning and resetting it at the end.

Here's the code in FocusOnControl. AllControls is a cursor created by

the Control Renamer engine. It contains the list of controls on the
target object, along with some additional information about each of

them:

LOCAL oControl, cControlPath, nMouseFound, nTop, nLeft
LOCAL nListIndex

This.AlwaysOnTop = .F.

IF EMPTY(AllControls.mFullPath)
 oControl = ThisForm.oChangeObject
ELSE
 cControlPath = "ThisForm.oChangeObject" + ;
 SUBSTR(AllControls.mFullPath, ;
 AT(".", AllControls.mFullPath))
 oControl = EVALUATE(cControlPath + "." + ;
 AllControls.cControlOrig)
ENDIF

IF PEMSTATUS(oControl, "SetFocus", 5) AND ;
 NOT (PEMSTATUS(oControl, "Enabled", 5) AND ;

 oControl.Enabled = .F.)
 oControl.SetFocus()
ELSE
 * Use brute force
 * First hold current mouse pos
 nMouseFound = AMOUSEOBJ(aMousePos, 1)

 IF PEMSTATUS(oControl, "Left", 5)
 * Has position properties, so click it
 * First, get position on form, not in container
 nTop = OBJTOCLIENT(oControl, 1)
 nLeft = OBJTOCLIENT(oControl, 2)
 ACTIVATE WINDOW (ThisForm.oChangeForm.Caption)
 MOUSE CLICK AT nTop + 5, nLeft + 5 PIXELS ;
 WINDOW (ThisForm.oChangeForm.Caption)
 ACTIVATE WINDOW (This.Name)
 * Reactivate this form
 MOUSE CLICK AT This.Top + 5, This.Left + 5 PIXELS

 IF nMouseFound = 4
 * Put mouse pointer back where it belongs
 DO CASE
 CASE WEXIST(aMousePos[2].Name)
 MOUSE AT aMousePos[4], aMousePos[3] PIXELS ;
 WINDOW (aMousePos[2].Name)
 CASE WEXIST(aMousePos[2].Caption)
 MOUSE AT aMousePos[4], aMousePos[3] PIXELS ;
 WINDOW (aMousePos[2].Caption)
 OTHERWISE
 * Can't do anything about it
 ENDCASE
 ENDIF
 ENDIF

ENDIF

This.AlwaysOnTop = .T.

Unfortunately, this code doesn't work exactly as you'd expect. There

are two problems. The first is a bug in VFP. When you call the
SetFocus method of the Container class at design time, focus lands on

the first control inside the container, rather than on the container
itself. I haven't found a way around this bug.

The other behavior probably isn't a bug, but is a problem for this tool.
When you force a click on some controls that don't include a SetFocus

method, it's difficult to get them to relinquish focus. Thus, as you

move through the list box, focus on the form doesn't always move with
you. I haven't found a workaround for this problem, either, short of

only setting focus to controls with a SetFocus method. However, you
can manually click on any control on the target object to re-synch.

Other form code

The only other form method containing code is Init, which instantiates
the Control Renamer engine and calls its GrabControls method to build

the list of controls on the target object:

LOCAL aProgs[1], nStackCount, cFolder

nStackCount = ASTACKINFO(aProgs)
cFolder = JUSTPATH(aProgs[nStackCount, 2])
This.oChangerEngine = NEWOBJECT("ControlRenamerEngine", ;
 FORCEPATH("ControlChanger.PRG",cFolder))

IF VARTYPE(This.oChangerEngine)<>"O"
 MESSAGEBOX("Unable to start Control Renamer Builder.")
 RETURN .F.
ELSE
 This.oChangeForm = This.oChangerEngine.oDesignerForm
 This.oChangeObject = This.oChangerEngine.oObject
 This.cObjectInfo = This.oChangerEngine.GetInfo(This.oChangeObject)

 This.oChangerEngine.GrabControls()

 This.FocusOnControl()

 This.txtCaption.Refresh()
 This.txtNewName.Refresh()
ENDIF

The code expects to find the Control Renamer form and the engine

class in the same directory. Rather than hard-coding the directory
name, it determines the form's location and looks for the engine class

there.

There's very little additional code in the form and only a little of that is

interesting. The InteractiveChange method for the list box refreshes
other controls and calls FocusOnControl. The LostFocus method for the

New Name text box checks that the newly specified name is a valid
name for an object in VFP.

The Rename button's Click method ensures all the names specified are
unique within their containers. If so, it calls the engine's ChangeNames

method to perform the renaming:

IF ThisForm.oChangerEngine.CheckForDups()
 ThisForm.oChangerEngine.ChangeNames()
 ThisForm.Release()
ELSE
 MESSAGEBOX("New names include duplicates. " + ;
 "Please recheck.", 0+48,"Control Renamer")
ENDIF

The Control Renamer engine class

The hard work of renaming the controls in the target object is done by
the Control Renamer engine class, called ControlRenamerEngine. It's

based on the Custom class. ControlRenamerEngine operates in two
phases. The first, performed early in the process, builds the list of

controls on the target object.

The second phase, changing the code and the controls, begins when

the user clicks on the Rename button on the Control Renamer form.

The rename process has three steps: building a list of references to
the target object's controls in the target object's code, modifying those

references to use the new names, and changing the names of the
controls.

ControlRenamerEngine has six custom properties (table 2).

Table 2: Engine properties–The Control Renamer engine class uses six custom
properties.

Property Purpose

aProcLines[1] Holds the individual lines of a method for parsing

cOldExact Holds the value of SET("EXACT") when the class is

called

lIsForm Indicates whether the target object is based on Form

or some other base class

nCurLine Indicates which line in aProcLines is currently being
parsed

oDesignerFor
m

Object reference to the Form Designer or Class
Designer form for the target object

oObject Object reference to the target object

ControlRenamerEngine has quite a few custom methods. The two key

methods are GrabControls, which builds the list of controls, and
ChangeNames, which performs the renaming. I describe them later in

this article, along with the methods they call.

Set-up and clean-up

The Init method of ControlRenamerEngine sets things up for both
phases. It creates two cursors and calls the custom GetTarget method

to acquire object references to the target object and the Designer
form. The first cursor, AllControls, holds the list of controls on the

target object. The second, ControlRefs, holds a list of references to the
controls in the target object's code. Here's the code in the Init

method:

* Create cursors
CREATE CURSOR AllControls ;
 (iID I AUTOINC, cControlOrig C(128), ;
 cControlNew C(128), mFullPath M, ;
 cInfo C(254), lReadOnly L)
INDEX on iID TAG iID
INDEX on UPPER(cControlOrig) TAG Name
SET ORDER TO

CREATE CURSOR ControlRefs ;
 (iID I AUTOINC, iRefControlFK I, iCodeControlFK I, ;
 cMethod C(128), nLine N(6), nOccurrence N(3))
* Create index so occurrences are processed
* from right to left
INDEX ON UPPER(cMethod) + TRANSFORM(nLine) + ;
 TRANSFORM(1000-nOccurrence) TAG InnerFirst

* Settings
This.cOldExact = SET("Exact")
SET EXACT OFF

* Get a reference to the containing object
This.oObject = This.GetTarget()
IF UPPER(This.oObject.Baseclass) = "FORM"
 This.lIsForm = .T.
 This.oDesignerForm = This.oObject
ELSE
 This.lIsForm = .F.
 This.oDesignerForm = This.oObject.Parent
ENDIF

RETURN
ENDPROC

The GetTarget method uses ASELOBJ() to get a reference to the

selected object or form and traces upward through the containership

hierarchy to find the containing form or class.

For forms the task is simple: Climb through Parent references until the

base class of the object you're looking at is Form. However, for classes
other than form classes, it isn't that easy. When you open a class in

the Class Designer, VFP creates both a formset and a form. As you

move up through the hierarchy, you eventually find a form, but the
object you want is the child of that form. It turns out you can

distinguish a real form or form class from the form created by the
Class Designer by checking for the presence of a BufferMode property.

Real forms, whether SCX-based or VCX-based, have such a property,
while the Class Designer's form doesn't. Here's the code for GetTarget:

* Grab a reference to the top-level control/form
LOCAL aSelected[1], oTarget, oLast

IF ASELOBJ(aSelected) = 0
 IF ASELOBJ(aSelected, 1) = 0
 oTarget = .null.
 ENDIF
ENDIF

IF VARTYPE(aSelected[1]) = "O"
 oTarget = aSelected[1]
 DO WHILE UPPER(oTarget.Parent.BaseClass)<>"FORMSET"
 oLast = oTarget
 oTarget = oTarget.Parent
 ENDDO

 * Form class/form or something else? If not a form
 * class need to go back down one level
 IF NOT PEMSTATUS(oTarget, "BufferMode", 5)
 * It's not a real form; it's the pseudo-form
 * represented by the Class Designer
 oTarget = oLast
 ENDIF
ELSE
 oTarget = .null.
ENDIF

RETURN oTarget

The Destroy method restores the original value of SET EXACT. Because
the engine runs in the private data session of the Control Renamer

form, there's no need to close the cursors created by the engine.

Building a list of controls

The first phase, creating a list of controls, is the simpler one. Starting

from the target object, as each control is identified, a record is added
to AllControls. The cursor tracks the original name of the control; the

user's new name for it; a piece of identifying information, if one is
available; the complete containership path to the control; and whether

the control's name can, in fact, be changed.

To more easily determine the name for a control and which control's

name is being specified (especially when there are focus problems on
the target object), the Control Renamer form displays one identifying

item for the control. The information depends on the type of control.
The Caption property is used for those controls that have one. If

there's no Caption property, the Value property is checked; if it exists
and isn't empty, it's used. If there's no Caption and no Value,

ControlSource is used, if it exists. For the remaining controls, no
identifying information is provided.

To properly change references to controls in code, the complete path
from the target object to the control is required. After all, a form or

class can contain a dozen different Text1 text boxes at different points
in the containership hierarchy.

When a control is part of a composite class, you can't change its name
in forms and classes that use the composite class. For example, if you

build a container class for address information, with an edit box for the

street address, and text boxes for the city, state, and ZIP code, when
you drop that container on a form, you can only change the name of

the container. (If you could change the names of the edit box and the
text boxes, code in the container class might not work.) So, the code

that builds the list of controls checks for this situation and marks those
controls as read-only in AllControls.

Figure 2 shows part of the contents of AllControls for a real form after
new names have been specified.

Figure 2: Auditing controls -- The AllControls cursor contains the list of controls
found, including their original names and the newly specified names.

The GrabControls method starts the process of building the list. It calls

DrillControls, which proceeds recursively, drilling down from the target
object. After the list is built, a query fills a cursor with the list of

unique control names; other methods use this list when searching for
code to change. Here's the code for GrabControls:

* Traverse the form/container and populate
* the cursor of controls
LOCAL cInfo

* Add the form itself, then drill down
cInfo = This.GetInfo(This.oObject)
INSERT INTO AllControls ;
 (cControlOrig, mFullPath, cInfo, lReadOnly) ;
 VALUES (This.oObject.Name, "", m.cInfo, .F.)

This.DrillControls(This.oObject, This.oObject.Name)

* Now get a list of unique names
SELECT DISTINCT cControlOrig ;
 FROM AllControls ;
 INTO CURSOR ControlNames

RETURN

The custom DrillControls method does most of the work of building the

list. It uses AMEMBERS() to get a list of controls contained by the
control it receives as a parameter, then processes each control in that

list:

PROCEDURE DrillControls(oContainer, cHierarchy)
* Drill into a container and add all the controls

* inside to the cursor

LOCAL nControls, aControls[1], nControl, oObject
LOCAL nPEMs, aPEMs[1], nNameRow, lReadOnly

nControls = AMEMBERS(aControls, oContainer, 2)

FOR nControl = 1 TO nControls
 * Figure out what info is available about this control
 oObject = EVALUATE("oContainer." + aControls[nControl])
 cInfo = This.GetInfo(oObject)

 * Find out whether name can be changed
 nPEMs = AMEMBERS(aPEMs, oObject, 3, "#+")
 nNameRow = ASCAN(aPEMs,"NAME",-1,-1,1,15)
 IF nNameRow <> 0
 lReadOnly = "R"$aPEMs[nNameRow,5]
 ELSE
 lReadOnly = .T.
 ENDIF

 INSERT INTO AllControls ;
 (cControlOrig, mFullPath, cInfo, lReadOnly) ;
 VALUES (aControls[nControl], cHierarchy, ;
 m.cInfo, m.lReadOnly)

 * Drill down
 IF PEMSTATUS(oObject, "Objects", 5)
 * Drill down
 This.DrillControls(oObject, ;
 cHierarchy + "." + aControls[nControl])
 ENDIF
ENDFOR

RETURN nControls

Both GrabControls and DrillControls call the custom GetInfo method to

return the identifying information for the current object. That method
is simply a case statement and it checks the various options for

additional information.

Checking the new names

The CheckForDups method, called from the Control Renamer form's

Rename button, ensures the new names specified by the user result in
a unique path to each control. It uses the information in AllControls.

Note that AllControls.cControlNew is bound to the New Name text box
in the Control Renamer form.

* Ensure that new names don't include duplicates

LOCAL lReturn

SELECT UPPER(IIF(EMPTY(cControlNew), ;
 cControlOrig, cControlNew)), ;
 UPPER(mFullPath), CNT(*) ;
 FROM AllControls ;
 GROUP BY 1,2 ;
 HAVING CNT(*) > 1 ;
 INTO CURSOR Dups

lReturn = _Tally=0

USE IN Dups
RETURN lReturn

Finding references to controls

The BuildCodeRefs method and the methods it calls read all the code

in the target object and its contained objects, and populates the
ControlRefs cursor with one record for each reference to a control on

the target object. Like GrabControls, this is a recursive process.

BuildCodeRefs is quite simple. It starts things off by calling the

DrillCode method, passing the target object as a parameter:

This.DrillCode(This.oObject)

The real work is done in the DrillCode method and the methods it calls.

DrillCode uses AMEMBERS() to find all events and methods. It calls the
AuditMethod method to check each event or method for references to

controls.

When that's done, DrillCode calls itself recursively for any contained

objects. This is where I encountered the second VFP bug. Although
Grid has an Objects collection, you can't use it to go through the list of

columns, so the code handles grids separately from other container
objects:

PROCEDURE DrillCode(oControl)

LOCAL aAllMem[1], nMembCount, nObject, nMember

* Make sure list of controls to search for exists
IF NOT USED("ControlNames")
 RETURN .F.
ENDIF

nMembCount = AMEMBERS(aAllMem, oControl, 1)
FOR nMember = 1 TO nMembCount
 IF INLIST(UPPER(aAllMem[nMember, 2]), ;
 "EVENT", "METHOD")
 This.AuditMethod(oControl, aAllMem[nMember,1])

 ENDIF
ENDFOR

* Work around bug with Grid.Objects
DO CASE
CASE UPPER(oControl.BaseClass)="GRID"
 IF oControl.ColumnCount > 0
 FOR nObject = 1 TO oControl.ColumnCount
 This.DrillCode(oControl.Columns[nObject])
 ENDFOR
 ENDIF

OTHERWISE
 IF PEMSTATUS(oControl, "Objects", 5)
 FOR nObject =1 TO oControl.Objects.Count
 This.DrillCode(oControl.Objects[nObject])
 ENDFOR
 ENDIF
ENDCASE

RETURN

AuditMethod is the heart of the process of finding references. It reads

the code for a method, then loops through the list of control names,
checking each in turn. If a control name is found in the current

method, the line containing it is parsed to put together the complete
path to that control. If necessary, AuditMethod traces backward

through the code to find a containing WITH statement. In addition, the
keywords Parent, This, and ThisForm are converted to the appropriate

references.

One of the biggest challenges in writing this code was finding exact

control names. Because you might have Text2 and Text20 on the
same form, and control names don't generally appear where exact

string matching can be used, I needed another approach. I chose to
use the periods on either side of a control's name as delimiters. That

meant I had to deal with the possibility that the name of a control

might be the last thing on a line of code. For example, consider this
line:

oControl = This.PageFrame1.Page2.Text3

To handle such cases, AuditMethod breaks the code for a method into

lines and adds a period at the end of each line before searching. That
makes it possible to search for a control name surrounded by periods

and know that it will find Text3. You can find the code for AuditMethod
on this issue's Professional Resource CD.

The comments in the code point out several situations the tool can't

handle. Be aware of the need to follow up with manual changes if any
of them apply.

AuditMethod calls on four more custom methods: GetCodeLineByPos,
FindWith, BuildControlPath, and LookUpControl. GetCodeLineByPos

accepts a block of code and a numeric position, and returns the line of
code that contains that position. It uses ALINES() to break the block of

code into individual lines and then figures out how many line breaks
(CHR(13)) occur before the specified position.

FindWith accepts a line number in the current method and searches
backward (toward the beginning of the method) to find a WITH

statement. Because WITH can be nested, the method is recursive:

PROCEDURE FindWith(nStartLine)
* Find the first occurrence of WITH preceding
* the specified line and extract the referenced object

LOCAL nLine, cWithLine, nNamePos, cObject, cContainer

nLine = nStartLine - 1
cWithLine = ALLTRIM(This.aProcLines[nLine])

DO WHILE nLine > 0 AND UPPER(cWithLine) <> "WITH"
 nLine = nLine - 1
 cWithLine = ALLTRIM(This.aProcLines[nLine])
ENDDO

IF nLine > 0
 nNamePos = AT(" ", ALLTRIM(cWithLine))
 cObject = ALLTRIM(SUBSTR(cWithLine, nNamePos + 1))
 * Remove trailing period
 IF RIGHT(cObject,1)="."
 cObject = LEFT(cObject, LEN(cObject)-1)
 ENDIF

ELSE
 cObject = ""
ENDIF

IF LEFT(cObject, 1) = "."
 * Nested WITH, keep going back
 cContainer = This.FindWith(nLine)
 cObject = cContainer + cObject
ENDIF

RETURN cObject

This method points out another situation the Control Renamer can't

handle: the possibility of a WITH that crosses method boundaries; that

is, a reference in one method that relies on WITH having been issued

in the calling method. (Of course, using such a reference is a bad
idea.)

BuildControlPath accepts an object reference to a control and builds a
complete path to the control by moving upward through the Parent

reference.

LookUpControl accepts either an object reference to a control or its

name, and looks it up in the AllControls cursor. It returns the primary
key for the control in the cursor; if the control can't be found, it

returns -1.

Figure 3 shows part of the contents of ControlRefs for the same form

whose controls are shown in figure 2.

Figure 3: Tracking references in code—The ControlRefs cursor has one record for
each mention of any control in the target object's code. The foreign keys point to the
AllControls cursor; the record indicates what line of what method contains the
reference.

Changing code

The ChangeNames method is the main routine of the rename phase. It

calls BuildCodeRefs to populate the ControlRefs cursor. Then, it makes
the changes. The InnerFirst index tag is used so that changes proceed

from right to left within any particular reference. For example, given
this line:

ThisForm.PageFrame1.Page1.Text1

the tag ensures Text1 is changed first, then Page1, then PageFrame1.

Changing the names in any other order makes it extremely difficult to
find all the changes.

Like AuditMethod, this code adds a period to the end of a line before
performing the replacement. The extraneous period is removed after

the replacement before adding the changed line to the overall method
code.

After all the code has been changed, the method changes the name of
the controls. You can find code demonstrating this on this issue's

Professional Resource CD.

Putting the Control Renamer to work

There are two ways to use the Control Renamer. The easier approach

is to open the target object in the Form Designer or Class Designer
and then issue DO FORM RenameControls.

However, you can also use the tool as a builder by registering it in
Wizards\Builder.DBF: the table that tracks available builders for VFP's

builder system. After you do this, use it by right-clicking in any form or
class and choosing Builder. In some cases, a dialog appears, offering

you a choice of builders. (In addition, because it's registered as an
"ALL" builder, the dialog appears at some unlikely times, such as when

you add a PEM to Favorites in VFP 9. In that situation, choose
MemberData Editor from the dialog.)

This issue's Professional Resource CD includes ccBuilderMain.PRG, a

program that registers the builder if it isn't already registered, and
then runs it. Run this program once from the Command window to

register the builder, and from then on it's available. (I described this
technique in my article "Build Your Own Builders" in the August 2002

issue at http://My.Advisor.com/doc/09950.)

After you have the Control Renamer running, you can select each

control and specify a new name for it. (You don't have to rename
every control, though; the tool renames only those for which you

specify a new name.) When you have the names you want, click on
the Rename button and the tool does the rest.

The perfect solution

In a perfect world, every VFP developer would give every control a
meaningful name before writing code. But in the real world, even good

http://my.advisor.com/doc/09950

developers sometimes forget. With the Control Renamer, fixing the

problem is simple.

